US006725267B1

United States Patent

(12) (10) Patent No.: US 6,725,267 B1
Hoang 5) Date of Patent: Apr. 20, 2004
(549) PREFETCHED DATA IN A DIGITAL 5,751,282 A 5/1998 Girard et al. ...c........... 345/327
BROADCAST SYSTEM 5,751,709 A 5/1998 Rathnavelu 370/395
5 5 1
,768,539 A 6/1998 Metz et al.
(75) TInventor: Khoi Hoang, Newark, CA (US) 2’;2(1)2252 2 * g }ggg iposa:()l
,790, au et al.
. . : : 5,805,804 A 9/1998 Laursen et al. 395/200.02
(73) Assignee: Pégdlwave Corporation, Fremont, CA 5815146 A 9/1998 Youden ct al. 345327
(US) 5,850,258 A 12/1998 Kang ..cocooeorverrcennen. 348/390
(*) Notice: Subject to any disclaimer, the term of this (List continued on next page.)
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
PCT International Search Report, International Application
(21) Appl. No.: 09/709,948 No. PCT/US02/19618 filed Jun. 20, 2002, mailed Sep. 19,
(22) Filed: Nov. 10, 2000 2002, 4 pages. . . .
Video on Demand Technologies and Demonstrations, Final
Related U.S. Application Data Report, Marek Podgorny and Geoffrey C. Fox, Northeast
Parallel Architectures Center, Contract No.:
(63) Continuation-in-part of application No. 09/584,832, filed on F-30602-94-C-0256, Mar. 1997, pp. 1-108.
May 31, 2000. d
List continued on next page.
(51) T0te CL7 oo GO6F 15/16 (page.)
(52) US.CL ... 709/226; 709/104; 709/217, Primary Examiner—_e Hien Luu
709/233 Assistant Examiner—Stephan Willett
(58) Field of Searchc.cccoceuvveiine. 709/104, 217,
7001226, 233 57 ABSTRACT
. A method for sending data to a client to provide data-on-
(56) References Cited demand services comprises the steps of: receiving a data file,
U.S. PATENT DOCUMENTS specifying a time interval, parsing the data file into a
plurality of data blocks based on the time interval such that
4,280,221 A 771981 Chun et al. ...ooovvnnenee. 375017 each data block is displayable during a time interval, deter-
4’945’562 A 7/1990 Horton et al. 87335 mining a required number of time slots to send the data file,
g’ggg’ggz 2 18;}338](“}?ngl etal """""""""" ; 6%?3 " allocating to each time slot at least a first of the plurality of
5132000 A 7/1992 Yurt et al data blocks and optionally one or more additional data
T491 ’ blocks, such that starting from any of the time slots, (i) the
SA21,031 A 5/1995 De Bey .ovovviveierins 725/92 arting y of tf
5521630 A * 5/1996 Chen et al. data file can be displayed by accessing the first of the
21, / play y g
5,557,316 A 9/1996 Hoarty et al. ..ooooveveviee 348/7 plurality of data blocks; (ii) at a consecutive time slot, a next
5,604,528 A 2/1997 Edwards et al. data block sequential to a prior displayed data block is
5,612,742 A 3/1997 Krause et al. available for displaying; and (iii) repeating step (ii) until all
5,619,249 A 4/1997 Billock et al. of the plurality of data blocks for the data file has been
gﬂgzi’gié 2 g/ igg; E/Ial;\(/)lglllll et ‘J’l' | displayed, and sending the plurality of data blocks based on
5701582 A 12;1997 De Bey . 4sysy the allocating step.
5,724,646 A 3/1998 Ganek et al. 455/4.2
5,745,758 A 4/1998 Shaw et al. 14 Claims, 5 Drawing Sheets

190

12

XN YIMS

1162
Backup b
Channel
Backup Channel [~
Server2

Backu
Up-Canverter 2

118a

1480

US 6,725,267 B1

Page 2
U.S. PATENT DOCUMENTS 6,199,076 Bl 3/2001 Logan etal.co....... 707/501
6,212,681 B1 4/2001 Tkeda ...cocovouevnveveneenenen. 725/92

5856973 A 1/1999 370/389 6,215,526 Bl 42001 Barton et al. .. oo 348/473
5,892,535 A 4/1999 Allen et al. w.ooovevvrnniinnns 348/9 6,219,355 Bl 4/2001 Brodiganc......... 370/486
5,909,594 A 6/1999 Ross et al. 6,222,530 Bl 4/2001 Sequeira
5,915,094 A 6/1999 Kouloheris et al. ... 395/200.49 6,233,380 Bl 52001 Bartoncoccceo... 386/46
5,949,948 A 9/1999 Krause et al.cooovvven 386/6 6,246,695 Bl 6/2001 Seazholtz et al. 370/468
5961,603 A 10/1999 Kunkel et al. 6263019 BL * 72001 Ryan
5978649 A 11/1999 Khan 6,266,369 Bl 7/2001 Wang et al.
5995002 A 11/1999 Yuen et al. 6,282,195 Bl 82001 Miller et al.c........ 370/392
6,005,599 A 12/1999 Asai et al.cocevene. 348/7 6,349,098 B1 2/2002 Parruck et al. 370/395
6,011,798 A 1/2000 McAlpine- 370/395 6,370,688 Bl 4/2002 Hejna, J&. .coevvevvervncnnee 725/101
6,012,080 A 1/2000 Ozden et al. . .. 709/102 6,389,075 B2 5/2002 Want et al.
6,018,359 A 1/2000 Kermode et al. 348/7 6,477,579 B1 11/2002 Kunkel et al.
6,018765 A~ 1/2000 Durana et al. - 709217 6,502,130 B1 122002 Birk et al. ..cooovvveerenee. 709/233
6,028,847 A 2/2000 Beanland 370/252 2001/0014211 Al * 8/2001 Morinaga
6,029,045 A 2/2000 Picco et al.
6,029,046 A 2/2000 Khan et al. OTHER PUBLICATIONS
6,049,332 A 4/2000 Boetje et al.
6,049,539 A 4/2000 Lee et al. PCT/ISA/220, PCT ISR, International Application No. PCT/
ggggggg 2 . 3@888 11;411115 o 211~ ~~~~~~~~~~~~~~~~~ 709200 US02/12752 Filed Apr. 23, 2002, mailed Feb. 10, 2003.
,055, ulp et al. . L
6.058.122 A 5/2000 szng etal oo, 37055220 PCT/ASA/220, PCTISR, International Application No. PCT/
6,075,570 A 6/2000 Usuietal. ...ocoov.ne... 348/560 US02/3800 Filed Nov. 27, 2002, mailed Feb. 14, 2003.
6,076,062 A * 6/2000 Van Steenbrugge PCT International Search Report, International Application
6,112,023 A 8/2000 Dave et al. No.: PCT/US00/22989 filed Aug. 22, 2000, mailed Aug. 15,
6,118,821 A * 9/2000 Matsumoto et al. 2001, 9 pages.
6,119,163 A * 9/2000 Monteiro et al. . . L.
6128467 A 10/2000 REEE ..ovvveervvrerereeees 455/4.2 PCT International Search Report, Internatlonal.Apphcatlon
6,157,949 A 12/2000 Cheng et al. 709219 No.: PCT/US01/17993 filed May 31, 2001, mailed Sep. 28,
6,160,546 A 12/2000 Thompson et al. 345/327 2001, 5 pages.
6,169,767 B1 * 1/2001 Strolle et al.
6,198,723 Bl 3/2001 Parruck et al. 370/230 * cited by examiner

U.S. Patent Apr. 20, 2004 Sheet 1 of 5 US 6,725,267 B1
/1 00
Central Controlling Server |-~ 102
o /1 08
v
Central 103
> Storage "
104a
& 106a
Channel Server 1 » Up-Converter 1 [
104b 106b | & >
N e = 3 | | Transmission
Channel Server 2 » Up-Converter 2 » @ 2 | [Medium
= {[110
104c 106¢c
L — =
Channel Server 3 [| Up-Converter 3
o o
o ®
¢ 104n ¢ 106n
iy |~
Channel Server n » Up-Converter n
/

System

Cable Television

120

FIG. 1A

U.S. Patent

Apr. 20, 2004 Sheet 2 of 5 US 6,725,267 B1
f1 00
192 IR 112
Central Controlling |, J| Monitoring
Server Module
i I . /1 08
Y
Central _— 103
> Storage
104a 106a
L | L
Channel Server 1 »| Up-Converter 1
104b 106b
| e
Channel Server 2 »| Up-Converter 2
104c 106c | £ |38
| [~ - g S 3
Channel Server 3 Up-Converter 3 = = 2
v = ® 3
] 3
@ ® =
® ® i 110
ht 104n bt 106n
L~ ||~
Channel Server n »| Up-Converter n
t /'y
A 4
116a 118a
Backup = Backup | | —
Channel » Up-Converter 1
116b 118b
Backup Channel 11 Backup |~
Server 2 » Up-Converter 2

FIG. 1B

U.S. Patent Apr. 20, 2004 Sheet 3 of 5 US 6,725,267 B1

[1 04
f202 f204 /206
Server QAM
v n
Modulat >
Controller [cPU) T Mo up
Converter
106
208 I 210
Y r /4
Network
Local Memory —— - —>
Interface Central
Controling
Server
102

FIG. 2

U.S. Patent Apr. 20, 2004 Sheet 4 of 5 US 6,725,267 B1

'/300

302 304 306 308
> QAM CPU Conditional Local Memory

110 "| Demodulator > ACCGSS] L » Soffor
- Contro Memory

A) K
. 309
f——>< "
STB o Graphics
Controller Decoder > Overlay

FIG. 3

U.S. Patent Apr. 20, 2004 Sheet 5 of 5 US 6,725,267 Bl

Receive a number of data 402
blocks "x" for a data file

=0 404

gl
Clear a Reference Array /‘406
416 408
. ./ No
=i —> END | -410
y
Yes

Wrrite All Data Blocks Stored in Matrix Positions of Column
[(i+]) mod (x)] in a Matrix into the Reference Array ; Do Not
Write If the Reference Array Already Contains the Data Block

424

420 -

— i=i+1

Does RA Contain
Data Block i ?

Add Data Block i into the Matrix at Matrix Postion
[(i+j)mod(x), j] and the Reference Array

FIG. 4

US 6,725,267 B1

1

PREFETCHED DATA IN A DIGITAL
BROADCAST SYSTEM

RELATED APPLICATION

This application is a continuation-in-part application of
the parent application titled “Systems and Methods for
Providing Video-On-Demand Services for Broadcasting
Systems” filed on May 31, 2000, bearing application Ser.
No. 09/584,832.

BRIEF DESCRIPTION OF THE INVENTION

This invention relates generally to data-on-demand sys-
tems. In particular, this invention relates to video-on-
demand systems.

BACKGROUND OF THE INVENTION

Video-on-demand (VOD) systems are one type of data-
on-demand (DOD) system. In VOD systems, video data files
are provided by a server or a network of servers to one or
more clients on a demand basis.

In a conventional VOD architecture, a server or a network
of servers communicates with clients in a standard hierar-
chical client-server model. For example, a client sends a
request to a server for a data file (e.g., a video data file). In
response to the client request, the server sends the requested
file to the client. In the standard client-server model, a
client’s request for a data file can be fulfilled by one or more
servers. The client may have the capability to store any
received data file locally in non-volatile memory for later
use. The standard client-server model requires a two-way
communications infrastructure. Currently, two-way commu-
nications requires building new infrastructure because exist-
ing cables can only provide one-way communications.
Examples of two-way communications infrastructure-are
hybrid fiber optics coaxial cables (HFC) or all fiber infra-
structure. Replacing existing cables is very costly and the
resulting services may not be affordable to most users.

In addition, the standard client-server model has many
limitations when a service provider (e.g., a cable company)
attempts to provide VOD services to a large number of
clients. One limitation of the standard client-server model is
that the service provider has to implement a mechanism to
continuously listen and fulfill every request from each client
within the network; thus, the number of clients who can
receive service is dependent on the capacity of such a
mechanism. One mechanism uses massively-parallel com-
puters having large and fast disk arrays as local servers.
However, even the fastest existing local server can only
deliver video data streams to about 1000 to 2000 clients at
one time. Thus, in order to service more clients, the number
of local servers must increase. Increasing local servers
requires more upper level servers to maintain control of the
local servers.

Another limitation of the standard client-server model is
that each client requires its own bandwidth. Thus, the total
required bandwidth is directly proportional to the number of
subscribing clients. Cache memory within local servers has
been used to improve bandwidth limitation but using cache
memory does not solve the problem because cache memory
is also limited.

Presently, in order to make video-on-demand services
more affordable for clients, existing service providers are
increasing the ratio of clients per local server above the local
server’s capabilities. Typically, a local server, which is
capable of providing service to 1000 clients, is actually

10

15

20

25

30

35

40

45

50

55

60

65

2

committed to service 10,000 clients. This technique may
work if most of the subscribing clients do not order videos
at the same time. However, this technique is set up for failure
because most clients are likely to want to view videos at the
same time (i.e., evenings and weekends), thus, causing the
local server to become overloaded.

Thus, it is desirable to provide a system that is capable of
providing on-demand services to a large number of clients
over virtually any transmission medium without replacing
existing infrastructure.

SUMMARY OF THE INVENTION

In an exemplary embodiment, at a server side, a method
for sending data to a client to provide data-on-demand
services comprises the steps of: receiving a data file, speci-
fying a time interval, parsing the data file into a plurality of
data blocks based on the time interval such that each data
block is displayable during the time interval, determining a
required number of time slots to send the data file, allocating
to each time slot at least a first of the plurality of data blocks
and optionally one or more additional data blocks, such that
the plurality of data blocks is available in sequential order to
a client accessing the data file during any time slot, and
sending the plurality of data blocks based on the allocating
step. In one embodiment, the parsing step includes the steps
of: determining an estimated data block size, determining a
cluster size of a memory in a channel server, and parsing the
data file based on the estimated data block size and the
cluster size. In another embodiment, the determining step
includes the step of assessing resource allocation and band-
width availability.

In one embodiment, the method further comprises the
steps of selecting a set of prefetch data blocks from the
plurality of data blocks and separately sending the set of
prefetch data blocks in a dedicated channel for sending
prefetch data, program guide, commercials, firmware
update, etc. In an exemplary embodiment, the step of
selecting a set of prefetch data blocks includes the steps of:
(1) determining a bandwidth reduction, a bandwidth alloca-
tion for prefetch data in the dedicated channel, and a delay
time; and (2) selecting the prefetch data blocks based on the
bandwidth reduction, the bandwidth allocation, and the
delay time.

In another embodiment, the method further comprises the
steps of receiving a request for a preview, randomly select-
ing a set of data blocks from the plurality of data blocks to
compose the preview, and causing a display of the preview.
In yet another embodiment, the method further comprises
sending a set of commercial data blocks in the dedicated
channel and causing a display of the set of commercial data
blocks at predetermined times. In an exemplary
embodiment, the commercial data blocks are continuously
sent in the dedicated channel. In this embodiment, the step
of displaying the set of commercial data blocks includes the
steps of receiving a user selection of a price based on a
frequency of commercial display and causing a display of
the set of commercial data blocks based on the user selec-
tion.

In yet another embodiment, the method further comprises
the steps of checking a packet header of the data file for an
emergency bit, tuning to the dedicated channel to receive
emergency information when the emergency bit is detected,
and causing a display of the emergency information. In one
embodiment, this method further comprises the steps of
determining whether the emergency information is for a
relevant region and displaying the emergency information if
the emergency information is for the relevant region.

US 6,725,267 B1

3

In an exemplary embodiment, at a client side, a method
for processing data received from a server to provide data-
on-demand services comprises the steps of: (a) receiving a
selection of a data file during a first time slot; (b) receiving
at least one data block of the data file during a second time
slot; (c) during a next time slot: receiving any data block not
already received, sequentially displaying a data block of the
data file, and repeating step (c) until all data blocks of the
data file has been received and displayed. In one
embodiment, the method for processing data received from
a server is performed by a set-top box at the client side.

In an exemplary embodiment, a data file is divided into a
number of data blocks and a scheduling matrix is generated
based on the number of data blocks. At the server side, the
scheduling matrix provides a send order for sending the data
blocks, such that a client can access the data blocks in
sequential order at a random time. In an exemplary
embodiment, a method for generating a scheduling matrix
for a data file comprises the steps of: (a) receiving a number
of data blocks [x] for a data file; (b) setting a first variable
[i] to zero; (c) setting a second variable [i] to zero; (d)
clearing all entries in a reference array; (e) writing at least
one data block stored in matrix positions of a column [(i+j)
modulo x] in a matrix to a reference array, if the reference
array does not already contain the data block; (f) writing a
data block [i] into the reference array and a matrix position
[(i+j) modulo x, j] of the matrix, if the reference array does
not contain the data block [i]; (g) incrementing the second
variable [i] by one and repeating step (e) until the second
variable [i] is equal to the number of data blocks [x]; and (h)
incrementing the first variable [j] by one and repeating the
step (c) until the first variable [j] is equal to the number of
data blocks [x]. In one embodiment, a scheduling matrix is
generated for each data file in a set of data files and a
convolution method is applied to generate a delivery matrix
based on the scheduling matrices for sending the set of data
files.

A data-on-demand system comprises a first set of channel
servers, a central controlling server for controlling the first
set of channel servers, a first set of up-converters coupled to
the first set of channel servers, a combiner/amplifier coupled
to the first set of up-converters, and a combiner/amplifier
adapted to transmit data via a transmission medium. In an
exemplary embodiment, the data-on-demand system further
comprises a channel monitoring module for monitoring the
system, a switch matrix, a second set of channel servers, and
a second set of up-converters. The channel monitoring
module is configured to report to the central controlling
server when system failure occurs. The central controlling
server, in response to report from the channel monitoring
module, instructs the switch matrix to replace a defective
channel server in the first set of channel servers with a
channel server in the second set of channel servers and a
defective up-converter in the first set of up-converters with
an up-converter in the second set of up-converters.

A method for providing data-on-demand services com-
prises the steps of calculating a delivery matrix of a data file,
sending the data file in accordance with the delivery matrix,
such that a large number of clients is capable of viewing the
data file on demand. In one embodiment, the data file
includes a video file.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A illustrates an exemplary DOD system in accor-
dance with an embodiment of the invention.

FIG. 1B illustrates an exemplary DOD system in accor-
dance with another embodiment of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 illustrates an exemplary channel server in accor-
dance with an embodiment of the invention.

FIG. 3 illustrates an exemplary set-top box in accordance
with an embodiment of the invention.

FIG. 4 illustrates an exemplary process for generating a
scheduling matrix in accordance with an embodiment of the
invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1A illustrates an exemplary DOD system 100 in
accordance with an embodiment of the invention. In this
embodiment, the DOD system 100 provides data files, such
as video files, on demand. However, the DOD system 100 is
not limited to providing video files on demand but is also
capable of providing other data files, for example, game files
on demand. The DOD system 100 includes a central con-
trolling server 102, a central storage 103, a plurality of
channel servers 104a-104n, a plurality of up-converters
106a—-106#, and a combiner/amplifier 108. The central con-
trolling server 102 controls the channel servers 104. The
central storage 103 stores data files in digital format. In an
exemplary embodiment, data files stored in the central
storage 103 are accessible via a standard network interface
(e.g., ethernet connection) by any authorized computer, such
as the central controller server 102, connected to the net-
work. Each channel server 104 is assigned to a channel and
is coupled to an up-converter 106. The channel servers 104
provide data files that are retrieved from the central storage
103 in accordance with instructions from the central con-
trolling server 102. The output of each channel server 104 is
a quadrature amplitude modulation (QAM) modulated inter-
mediate frequency (IF) signal having a suitable frequency
for the corresponding up-converter 106. The QAM-
modulated IF signals are dependent upon adopted standards.
The current adopted standard in the United States is the
data-over-cable-systems-interface-specification (DOCSIS)
standard, which requires an approximately 43.75 MHz IF
frequency. The up-converters 106 convert IF signals
received from the channel servers 104 to radio frequency
signals (RF signals). The RF signals, which include fre-
quency and bandwidth, are dependent on a desired channel
and adopted standards. For example, under the current
standard in the United States for a cable television channel
80, the RF signal has a frequency of approximately 559.25
MHz and a bandwidth of approximately 6 MHz. The outputs
of the up-converters 106 are applied to the combiner/
amplifier 108. The combiner/amplifier 108 amplifies,
conditions, and combines the received RF signals then
outputs the signals out to a transmission medium 110.

In an exemplary embodiment, the central controlling
server 102 includes a graphics user interface (not shown) to
enable a service provider to schedule data delivery by a
drag-and-drop operation. Further, the central controlling
server 102 authenticates and controls the channel servers
104 to start or stop according to delivery matrices. In an
exemplary embodiment, the central controlling server 102
automatically selects a channel and calculates delivery
matrices for transmitting data files in the selected channel.
The central controlling server 102 provides offline addition,
deletion, and update of data file information (e.g., duration,
category, rating, and/or brief description). Further, the cen-
tral controlling server 102 controls the central storage 103
by updating data files and databases stored therein.

In an exemplary embodiment, an existing cable television
system 120 may continue to feed signals into the combiner/

US 6,725,267 B1

5

amplifier 108 to provide non-DOD services to clients. Thus,
the DOD system 100 in accordance with the invention does
not disrupt present cable television services.

FIG. 1B illustrates another exemplary embodiment of the
DOD system 100 in accordance with the invention. In
addition to the elements illustrated in FIG. 1A, the DOD
system 100 includes a switch matrix 112, a channel moni-
toring module 114, a set of back-up channel servers
116a—116b, and a set of back-up up-converters 118a—118b.
In one embodiment, the switch matrix 112 is physically
located between the up-converters 106 and the combiner/
amplifier 108. The switch matrix 112 is controlled by the
central controlling server 102. The channel monitoring mod-
ule 114 comprises a plurality of configured set-top boxes,
which simulate potential clients, for monitoring the health of
the DOD system 100. Monitoring results are communicated
by the channel monitoring module 114 to the central con-
trolling server 102. In case of a channel failure (ie., a
channel server failure, an up-converter failure, or a commu-
nication link failure), the central controlling server 102
through the switch matrix 112 disengages the malfunction-
ing component and engages a healthy backup component
116 and/or 118 to resume service.

In an exemplary embodiment, data files being broadcasted
from the DOD system 100 are contained in motion pictures
expert group (MPEG) files. Each MPEG file is dynamically
divided into data blocks and sub-blocks mapping to a
particular portion of a data file along a time axis. These data
blocks and sub-blocks are sent during a pre-determined time
in accordance with three-dimensional delivery matrices pro-
vided by the central controlling server 102. A feedback
channel is not necessary for the DOD system 100 to provide
DOD services. However, if a feedback channel is available,
the feedback channel can be used for other purpose, such as
billing or providing Internet services.

FIG. 2 illustrates an exemplary channel server 104 in
accordance with an embodiment of the invention. The
channel server 104 comprises a server controller 202, a CPU
204, a QAM modulator 206, a local memory 208, and a
network interface 210. The server controller 202 controls the
overall operation of the channel server 104 by instructing the
CPU 204 to divide data files into blocks (further into
sub-blocks and data packets), select data blocks for trans-
mission in accordance with a delivery matrix provided by
the central controlling server 102, encode selected data,
compress encoded data, then deliver compressed data to the
QAM modulator 206. The QAM modulator 206 receives
data to be transmitted via a bus (i.e., PCI, CPU local bus) or
Ethernet connections. In an exemplary embodiment, the
QAM modulator 206 may include a downstream QAM
modulator, an upstream quadrature amplitude modulation/
quadrature phase shift keying (QAM/QPSK) burst demodu-
lator with forward error correction decoder, and/or an
upstream tuner. The output of the QAM modulator 206 is an
IF signal that can be applied directly to an up-converter 106.

The network interface 210 connects the channel server
104 to other channel servers 104 and to the central control-
ling server 102 to execute the scheduling and controlling
instructions from the central controlling server 102, report-
ing status back to the central controlling server 102, and
receiving data files from the central storage 103. Any data
file retrieved from the central storage 103 can be stored in
the local memory 208 of the channel server 104 before the
data file is processed in accordance with instructions from
the server controller 202. In an exemplary embodiment, the
channel server 104 may send one or more DOD data streams
depending on the bandwidth of a cable channel (e.g., 6, 6.5,

10

15

20

25

30

35

40

45

50

55

60

65

6

or 8 MHz), QAM modulation (e.g., QAM 64 or QAM 256),
and a compression standard/bit rate of the DOD data stream
(i.e., MPEG-1 or MPEG-2).

FIG. 3 illustrates an exemplary set-top box (STB) 300 in
accordance with an embodiment of the invention. The STB
300 comprises a QAM demodulator 302, a CPU 304, a
conditional access module 306 (e.g., a smart card system), a
local memory 308, a buffer memory 309, a STB controller
310, a decoder 312, and a graphics overlay module 314. The
STB controller 310 controls the overall operation of the STB
300 by controlling the CPU 302 and the QAM demodulator
302 to select data in response to a client’s request, decode
selected data, decompress decoded data, reassemble
decoded data, store decoded data in the local memory 308 or
the buffer memory 309, and deliver stored data to the
decoder 312. In an exemplary embodiment, the STB con-
troller 310 controls the overall operation of the STB 300
based on data packet headers in the data packets received
from the transmission medium 110. In an exemplary
embodiment, the local memory 308 comprises non-volatile
memory (e.g., a hard drive) and the buffer memory 309
comprises volatile memory.

In one embodiment, the QAM demodulator 302 com-
prises transmitter and receiver modules and one or more of
the following: privacy encryption/decryption module, for-
ward error correction decoder/encoder, tuner control, down-
stream and upstream processors, CPU and memory interface
circuits. The QAM demodulator 302 receives modulated IF
signals, samples and demodulates the signals to restore data.

The conditional access module 306 permits a decoding
process when access is granted after authentication and/or
when appropriate fees have been charged. Access condition
is determined by the service provider.

In an exemplary embodiment, when access is granted, the
decoder 312 decodes at least one data block to transform the
data block into images displayable on an output screen. The
decoder 312 supports commands from a subscribing client,
such as play, stop, pause, step, rewind, forward, etc.

The graphics overlay module 314 enhances displayed
graphics quality by, for example, providing alpha blending
or picture-in-picture capabilities. In an exemplary
embodiment, the graphics overlay module 314 can be used
for graphics acceleration during game playing mode, for
example, when the service provider provides games-on-
demand services using the system in accordance with the
invention.

In an exemplary embodiment, although data files are
broadcasted to all cable television subscribers, only the
DOD subscriber who has a compatible STB 300 will be able
to decode and enjoy data-on-demand services. In one exem-
plary embodiment, permission to obtain data files on
demand can be obtained via a smart card system in the
conditional access control module 306. A smart card may be
rechargeable at a local store or vending machine set up by
a service provider. In another exemplary embodiment, a flat
fee system provides a subscriber unlimited access to all
available data files.

In an exemplary embodiment, data-on-demand interactive
features permit a client to select at any time an available data
file. The amount of time between when a client presses a
select button and the time the selected data file begins
playing is referred to as a response time. As more resources
are allocated (e.g., bandwidth, server capability) to provide
DOD services, the response time gets shorter. In an exem-
plary embodiment, a response time can be determined based
on an evaluation of resource allocation and desired quality
of service.

US 6,725,267 B1

7

In an exemplary embodiment, a selected response time
determines the duration of a time slot. The duration of a time
slot (TS) is the time interval for playing a data video file, is
divided into a number of data blocks such that each data
block can support the playing of the data file for the duration
of a time slot.

In one embodiment, the number of data blocks (NUM__
OF_BLKS) for each data file can be calculated as follows:

Estimated_ BLK_ Size = (DataFile_ Size * TS)/DataFile_ Length @

BLK SIZE = (Estimated BLK Size + CLUSTER_SIZE - 1 Byte)/ (2)
CLUSTER_SIZE

BLK_SIZE_BYTES = BLK_SIZE * CLUSTER_SIZE ®3)
NUM_OF_BLKS = (DataFile_Size + BLK_SIZE_BYTES -)

1 Byte)/BLK_SIZE_ BYTES

In equations (1) to (4), the Estimated BLK_Size is an
estimated block size (in Bytes); the DataFile_ Size is the
data file size (in Bytes); TS represents the duration of a time
slot (in seconds); DataFile_ Length is the duration of the
data file (in seconds); BLK SIZE is the number of clusters
needed for each data block; CLUSTER _SIZE is the size of
a cluster in the local memory 208 for each channel server
104 (e.g., 64 KBytes); BLK_SIZE BYTES is a block size
in Bytes. In this embodiment, the number of blocks (NUM__
OF_BLKS) is equal to the data file size (in Bytes) plus a
data block size in Bytes minus 1 Byte and divided by a data
block size in Bytes. Equations (1) to (4) illustrate one
specific embodiment. A person of skill in the art would
recognize that other methods are available to calculate a
number of data blocks for a data file. For example, dividing
a data file into a number of data blocks is primarily a
function of an estimated block size and the cluster size of the
local memory 208 of a channel server 104. Thus, the
invention should not be limited to the specific embodiment
presented above.

FIG. 4 illustrates an exemplary process for generating a
scheduling matrix for sending a data file in accordance with
an embodiment of the invention. In an exemplary
embodiment, this invention uses time division multiplexing
(TDM) and frequency division multiplexing (FDM) tech-
nology to compress and schedule data delivery at the server
side. In an exemplary embodiment, a scheduling matrix is
generated for each data file. In one embodiment, each data
file is divided into a number of data blocks and the sched-
uling matrix is generated based on the number of data
blocks. Typically, a scheduling matrix provides a send order
for sending data blocks of a data file from a server to clients,
such that the data blocks are accessible in sequential order
by any client who wishes to access the data file at a random
time.

At step 402, a number of data blocks (x) for a data file is
received. A first variable, j, is set to zero (step 404). A
reference array is cleared (step 406). The reference array
keeps track of data blocks for internal management pur-
poses. Next, j is compared to x (step 408). If j is less than
X, a second variable, i, is set to zero (step 412). Next, i is
compared to x (step 414). If i is less than x, data blocks
stored in the column [(i+j) modulo (x)] of a scheduling
matrix are written into the reference array (step 418). If the
reference array already has such data block(s), do not write
a duplicate copy. Initially, since the scheduling matrix does
not yet have entries, this step can be skipped. Next, the
reference array is checked if it contains data block i (step
420). Initially, since all entries in the reference array has
been cleared at step 406, there would be nothing in the

10

15

20

25

30

35

40

45

50

55

60

65

8

reference array. If the reference array does not contain data
block i, data block i is added into the scheduling matrix at
matrix position [(i+j) modulo (x), j] and the reference array
(step 422). After the data block i is added to the scheduling
matrix and the reference array, i is incremented by 1, such
that i=i+1 (step 424), then the process repeats at step 414
until i=x. If the reference array contains data block i, i is
incremented by 1, such that i=i+1 (step 424), then the
process repeats at step 414 until i=x. When i=x, j is incre-
mented by 1, such that j=j+1 (step 416) and the process
repeats at step 406 until j=x. The entire process ends when
j=x (step 410).

In an exemplary embodiment, if a data file is divided into
six data blocks (x=0), the scheduling matrix and the refer-
ence arrays are as follows:

Scheduling Matrix (SM)

TS0 TS1 TS2 TS3 TS4 TS5
[0, 0] bIkO [1, 0] blk1 [2, O] blk2 [3, O] blk3 [4, 0] blk4 [5, O] blkS
[0, 1] [1, 1] blko [2, 1] [3.1] [4.1] [5. 0]
[0, 2] [1, 2] [2, 2] bIkO [3, 2] blk1 [4, 2] [5,1]
[0, 3] [1, 3] [2, 3] [3, 3] blkO [4, 3] [5, 2] blk2
[0, 4] [1, 4] blk3 [2, 4] [3, 4] [4, 4] bIKO [5, 3] blkl
[0, 5] [1, 5] [2, 5] [3, 5] blk4 [4, 5] [5, 4] blkO
Reference Array (RA)

space0 space 1 space 2 space3 spaced spaceS
TS0 blk0 blk1 blk2 blk3 blk4 blks
TS1 blk1 blk0 blk2 blk3 blk4 blks
TS2 blk2 blk0 blk3 blk1 blk4 blks
TS3 blk3 blk1 blk0 blk4 blks blk2
TS4 blk4 blk0 blks blk2 blk1 blk3
TSs blks blk2 blk1 blk0 blk3 blk4

In this exemplary embodiment, based on the scheduling
matrix above, the six data blocks of the data file are sent in
the following sequence:

TSO => blk0
TS1 => blk0, blk1, blk3

TS2 => blk0, blk2

TS3 => blk0, blk1, blk3, blk4
TS4 => blk0, blk4

TS5 => blk0, blk1, blk2, blkS

In another exemplary embodiment, a look-ahead process
can be used to calculate a look-ahead scheduling matrix to
send a predetermined number of data blocks of a data file
prior to a predicted access time. For example, if a predeter-
mined look-ahead time is the duration of one time slot, for
any time slot greater than or equal to time slot number four,
data block 4 (blk4) of a data file should be received by a STB
300 at a subscribing client at or before TS3, but blk4 would
not be played until TS4. The process steps for generating a
look-ahead scheduling matrix is substantially similar to the
process steps described above for FIG. 4 except that the
look-ahead scheduling matrix in this embodiment schedules
an earlier sending sequence based on a look-ahead time.
Assuming a data file is divided into six data blocks, an
exemplary sending sequence based on a look-ahead sched-
uling matrix, having a look-ahead time of the duration of
two time slots, can be represented as follows:

US 6,725,267 B1

-continued
TS0 => blk0 Total Data Blocks
TS1 => blk0, blk1, blk3, blk4
TS2 => blk0, blk2 5 Option 3: Send video file N at shift 2 TS
TS3 => blk0, blk1, blk3, blk4, blks
TS4 => blk0, blkS TS0 => MO, N0, N2 3
TS5 => blk0, blk1, blk2 TS1 => MO, M1, M3, N0, N1, N3, N4 7
TS2 => MO, M2, N0, N4 4
TS3 => MO, M1, M3, M4, N0, N1, N2, N5 8
. 10 TS4 => MO, M4, NO 3
A three-dimensional delivery matrix for sending a set of TS5 => MO, M1, M2, MS, NO, N1, N3 7
data files is generated based on the scheduling matrices for
each data file of the set of data files. In the three-dimensional Option 4: Send video file N at shift 3 TS
delivery matrix, a third dlmensmn.contalmng IDs for each TS0 => MO, NO, N1, N3, N4 P
dgta ﬁl.e in the set of dat.a ﬁles is generated. .T.he three.- 15 TSI => MO, M1, M3, N0, N4 5
dimensional delivery matrix is calculated to efficiently uti- TS2 => MO, M2, NO, N1, N2, N5 6
lize available bandwidth in each channel to deliver multiple TS3 => MO, M1, M3, M4, NO 5
data streams. In an exemplary embodiment, a convolution TS4 => MO, M4, NO, N1, N3 S
o . . TS5 => MO, M1, M2, MS, NO, N2 6
method, which is well known in the art, is used to generate
a three-dimensional delivery matrix to schedule an efficient 5o Option 5: Send video file N at shift 4 TS
delivery of a set of data files. For example, a convolution
method may include the following policies: (1) the total TSD => MO, NO, N4 3
. - . TS1 => MO, M1, M3, N0, N1, N2, N5 7
number of data blocks sent in the duration of any time slot TS2 —> MO, M2, NO 3
(TS) should be kept at a smallest possible number; and (2) TS3 => MO, M1, M3, M4, NO, N1, N3 7
if multiple partial solutions are available with respect to s TS4 => MO, M4, N0, N2 4
policy (1), the preferred solution is the one which has a 27 TS5 => M0, M1, M2, M5, N0, N1, N3, N4 8
smallest sum of data b.locks by adding the dat.a blocks to be Option 6: Send video file N at shift 5 TS
sent during the duration of any reference time slot, data
blocks to be sent during the duration of a previous time slot TS0 => MO, NO, N1, N2, N5 5
(with respect to the reference time slot), and data blocks to TS1 => MO, M1, M3, NO 4
be sent during the duration of a next time slot (with respect 30 TS2 => M0, M2, NO, N1, N3 5
to the reference time slot). For example, assuming an TS3 => MO, M1, M3, M4, NO, N2 6
. TS4 => MO, M4, N0, N1, N3, N4 6
exemplary system sending two short data files, M and N, TSS —» MO. M1, M2. M3, NO. N4 6

where each data file is divided into six data blocks, the
sending sequence based on a scheduling matrix is as fol-
lows:

TSO => blk0
TS1 => blk0, blk1, blk3

TS2 => blk0, blk2

TS3 => blk0, blk1, blk3, blk4
TS4 => blk0, blk4

TS5 => blk0, blk1, blk2, blkS

Applying the exemplary convolution method as described
above, possible combinations of delivery matrices are as
follows:

Total Data Blocks

Option 1: Send video file N at shift 0 TS

TS0 => MO, NO
TS1 => MO, M1, M3, N0, N1, N3

TS2 => MO, M2, N0, N2

TS3 => MO, M1, M3, M4, N0, N1, N3, N4
TS4 => MO, M4, NO, N4

TS5 => MO, M1, M2, M5, NO, N1, N2, N5

[o sl SN oI e N S]

Option 2: Send video file N at shift 1 TS

TSO => MO, NO, N1, N3

TS1 => MO, M1, M3, NO, N2
TS2 => MO, M2, NO, N1, N3, N4
TS3 => MO, M1, M3, M4, NO, N4
TS4 => M0, M4, NO, N1, N2, N5
TSS => M0, M1, M2, M5, NO

(SN Mo N R N

35

40

50

55

60

65

Applying policy (1), options 2, 4, and 6 have the smallest
maximum number of data blocks (i.e., 6 data blocks) sent
during any time slot. Applying policy (2), the optimal
delivery matrix in this exemplary embodiment is option 4
because option 4 has the smallest sum of data blocks of any
reference time slot plus data blocks of neighboring time slots
(i.e., 16 data blocks). Thus, optimally for this embodiment,
the sending sequence of the data file N should be shifted by
three time slots. In an exemplary embodiment, a three-
dimensional delivery matrix is generated for each channel
server 104.

When data blocks for each data file are sent in accordance
with a delivery matrix, a large number of subscribing clients
can access the data file at a random time and the appropriate
data blocks of the data file will be timely available to each
subscribing client. In the example provided above, assume
the duration of a time slot is equal to 5 seconds, the DOD
system 100 sends data blocks for data files M and N in
accordance with the optimal delivery matrix (i.e., shift
delivery sequence of data file N by three time slots) in the
following manner:

Time 00:00:00 => MO NO N1 N3 N4
Time 00:00:05 => MO M1 M3 NO N4
Time 00:00:10 => MO M2 NO N1 N2 N5
Time 00:00:15 => M0 M1 M3 M4 NO
Time 00:00:20 => MO M4 NO N1 N3
Time 00:00:25 => MO M1 M2 M5 NO N2
Time 00:00:30 => MO NO N1 N3 N4
Time 00:00:35 => MO M1 M3 NO N4
Time 00:00:40 => MO M2 NO N1 N2 N5
Time 00:00:45 => MO M1 M3 M4 NO

US 6,725,267 B1

11

-continued

Time 00:00:50 => MO M4 NO N1 N3
Time 00:00:55 => MO M1 M2 M5 NO N2

If at time 00:00:00 a client A selects movie M, the STB
300 at client A receives, stores, plays, and rejects data blocks
as follows:

12

broadcasting. The central controlling server 102 calculates
and sends to the channel servers 104 three-dimensional
delivery matrices (ID, time slot, and data block send order).
During broadcasting, channel servers 104 consult the three-
dimensional delivery matrices to send appropriate data
blocks in an appropriate order. Each data file is divided into
data blocks so that a large number of subscribing clients can
separately begin viewing a data file continuously and

Time 00:00:00 => Receive MO => play MO, store MO.

Time 00:00:05 => Receive M1, M3 => play M1, store M0, M1, M3.

Time 00:00:10 => Receive M2 => play M2, store MO, M1, M2 M3.

Time 00:00:15 => Receive M4 => play M3, store M0, M1, M2, M3, M4.
Time 00:00:20 => Receive none => play M4, store M0, M1, M2, M3, M4.
Time 00:00:25 => Receive M5 => play M5, store MO, M1, M2, M3, M4, M5.

If at time 00:00: 10, a client B selects movie M, the STB 20
300 at client B receives, stores, plays, and rejects data blocks
as follows:

sequentially at a random time. The size of a data block of a
data file is dependent on the duration of a selected time slot
and the bit rate of the data stream of the data file. For

Time 00:00:10 => Rev MO, M2 => play MO, store MO, M2.

Time 00:00:15 => Rev M1, M3, M4 => play M1, store MO, M1, M2, M3,
Time 00:00:20 => Recv none => play M2, store MO, M1, M2, M3,
Time 00:00:25 => Rcv M5 => play M3, store MO, M1, M2, M3,
Time 00:00:30 => Recv none => play M4, store MO, M1, M2, M3,
Time 00:00:35 => Recv none => play M5, store MO, M1, M2, M3,

M4.
M4.

M4, M5.
M4, M5.
M4, M5.

If at time 00:00: 15, a client C selects movie N, the STB
300 of the client C receives, stores, plays, and rejects data
blocks as follows:

example, in a constant bit rate MPEG data stream, each data
block has a fixed size of: Block Size (MBytes)=BitRate
(Mb/s)xTS (sec)/8 (1).

Time 00:00:15 => Rev NO => play NO, store NO.

Time 00:00:20 —> Rev N1 N3 -> play N1, store NO, N1, N3.

Time 00:00:25 => Rev N2 => play N2, store NO, N1, N2, N3.

Time 00:00:30 => Rev N4 => play N3, store NO, N1, N2, N3, N4.
Time 00:00:35 => Recv none => play N4, store NO, N1, N2, N3, N4.
Time 00:00:40 => Rev N5 => play NS, store NO, N1, N2, N3, N4, N5.

If at time 00:00:30, a client D also selects movie N, the
STB 300 at the client D receives, stores, plays, and rejects
data blocks as follows:

In an exemplary embodiment, a data block size is adjusted
to a next higher multiple of a memory cluster size in the local
memory 208 of a channel server 104. For example, if a

Time 00:00:30 => Rcv NO, N1, N3, N4 => play NO, store NO, N1, N3, N4.

Time 00:00:35 => Recv none => play N1, store NO, N1, N3, N4.

Time 00:00:40 =22 Rev N2, N5 => play N2, store NO, N1, N2, N3, N4, N5.
Time 00:00:45 => Recv none => play N3, store NO, N1, N2, N3, N4, N5.
Time 00:00:50 => Recv none => play N4, store NO, N1, N2, N3, N4, N5.
Time 00:00:55 => Recv none -> play NS, store NO, N1, N2, N3, N4, N5.

60
As shown in the above examples, any combination of
clients can at a random time independently select and begin
playing any data file provided by the service provider.

General Operation o

A service provider can schedule to send a number of data
files (e.g., video files) to channel servers 104 prior to

calculated data block length is 720 Kbytes according to
equation (1) above, then the resulting data block length
should be 768 KBytes if the cluster size of the local memory
208 is 64 KBytes. In this embodiment, data blocks should be
further divided into multiples of sub-blocks each having the
same size as the cluster size. In this example, the data block
has twelve sub-blocks of 64 KBytes.

US 6,725,267 B1

13

Asub-block can be further broken down into data packets.
Each data packet contains a packet header and packet data.
The packet data length depends on the maximum transfer
unit (MTU) of a physical layer where each channel server’s
CPU sends data to. In the preferred embodiment, the total
size of the packet header and packet data should be less than
the MTU. However, for maximum efficiency, the packet data
length should be as long as possible.

In an exemplary embodiment, data in a packet header
contains information that permits the subscriber client’s
STB 300 to decode any received data and determine if the
data packet belongs to a selected data file (e.g., protocol
signature, version, ID, or packet type information). The
packet header may also contain other information, such as
block/sub-block/packet number, packet length, cyclic redun-
dancy check (CRC) and offset in a sub-block, and/or encod-
ing information.

Once received by a channel server 104, data packets are
sent to the QAM modulator 206 where another header is
added to the data packet to generate a QAM-modulated IF
output signal. The maximum bit rate output for the QAM
modulator 206 is dependent on available bandwidth. For
example, for a QAM modulator 206 with 6 MHz bandwidth,
the maximum bit rate is 5.05 (bit/symbol)x6 (MHz)=30.3
Mbit/sec.

The QAM-modulated IF signals are sent to the
up-converters 106 to be converted to RF signals suitable for
a specific channel (e.g., for CATV channel 80, 559.250 MHz
and 6 MHz bandwidth). For example, if a cable network has
high bandwidth (or bit rate), each channel can be used to
provide more than one data stream, with each data stream
occupying a virtual sub-channel. For example, three MPEG1
data streams can fit into a 6 MHz channel using QAM
modulation. The output of the up-converters 106 is applied
to the combiner/amplifier 108, which sends the combined
signal to the transmission medium 110.

In an exemplary embodiment, the total system bandwidth
(BW) for transmitting “N” data streams is BW=Nxbw,
where bw is the required bandwidth per data stream. For
example, three MPEG-1 data streams can be transmitted at
the same time by a DOCSIS cable channel having a system
bandwidth of 30.3 Mbits/sec because each MPEG-1 data
stream occupies 9 Mbits/sec of the system bandwidth.

Typically, bandwidth is consumed regardless of the num-
ber of subscribing clients actually accessing the DOD ser-
vice. Thus, even if no subscribing client is using the DOD
service, bandwidth is still consumed to ensure the
on-demand capability of the system.

In an exemplary embodiment, the total system bandwidth
(BW) may be reduced by prefetching some data blocks of
each data file. Prefetch data blocks are continuously sent in
a separate, dedicated channel. In one embodiment, the
prefetch data blocks for a data file are sent sequentially in a
group. By sending prefetch data blocks, the total system
bandwidth (BW) needed for delivering the remaining data
blocks is reduced. After determining a desirable number of
prefetch data blocks to be sent in a separate channel, the
schedule for sending the remaining data blocks should be
adjusted so that the prefetch data blocks are not sent again
with other data blocks.

For example, in the exemplary schedule matrix above,
where a data file is divided into six data blocks, if the first
data block “b0” and the second data block “b1” are both
prefetch data blocks, the schedule matrix should be modified
to be as follows for the remaining data blocks (b2-b5):

10

15

20

25

30

35

40

45

50

55

60

65

14

TSO => [nothing]

TS1 => blk3

TS2 => blk2

TS3 => blk3, blk4
TS4 => blk4

TS5 => blk2, blkS

In the above example, if b0 is the only prefetch data block,
the total bandwidth for sending the remaining data blocks
(b1-b5) of the data file is reduced by 37.5% [i.c., six data
blocks removed from a total of sixteen data blocks]. Next, if
data block “b1” is also a prefetch data block, the bandwidth
for sending the remaining data blocks (b2-b5) is reduced by
an additional 12.5%. Thus, the incremental bandwidth
reduction for prefetching b1 is not as great as prefetching b0.
Because the incremental bandwidth reduction diminishes as
more data blocks are prefetched, an optimal number of
prefetch data blocks for each data file can be determined
based on a desired bandwidth reduction. In an exemplary
embodiment, the bandwidth saved by prefetching data
blocks x to y of a data file can be estimated by the following
equation:

Z(1/n)m=(x+1) to (y+1)

In addition, as the number of prefetch data blocks
increases, the prefetch delay time increases. The prefetech
delay time is determined based on the size of a data block for
each data file, the number of prefetch data blocks per data
file, the number of data files being sent, and the allocated
prefetch bandwidth in the dedicated channel. In an exem-
plary embodiment, all prefetch data blocks for each file are
sent sequentially and continuously in the dedicated channel,
one data block per time slot. A person skilled in the art would
recognize that as the number of prefetch data blocks
increases, the longer the prefetch delay time. Thus, when
determining an optimal number of prefetch data blocks for
each data file, an acceptable prefetch delay time should be
considered.

For example, if data blocks b0 and b1 of data files M and
N are to be prefetched in the dedicated channel, these
prefetch data blocks can be sent in the following manner:

M0 M1 NO N1 M0 M1 NON1. ..

Assuming a given allocated prefetch bandwidth of PRF__
BW (Mby/s), in an exemplary embodiment, a prefetch delay
time can be calculated as follows: Prefetch delay time=[data
block size (Mbytes)*number of prefetch data blocks*
(number of data files to be sent+1)*8]/PRF_BW (Mb/s)

In an exemplary embodiment, a prefetch cycle time
(PRF_TIME), which is the time required to send a complete
round of prefetched data blocks for all data files being sent,
can be calculated as follows: Prefetch cycle time=[data
block size (Mbytes)*number of prefetch data
blocks*number of data files to be sent*8 J/PRF_BW (Mby/s).

In one embodiment, to reduce the prefetch delay time,
prefetch data blocks of a new data file are sent more
frequently than prefetch data blocks in an old data file (e.g.,
a data file that has been sent continuously for a predeter-
mined amount of time). Fox example, if M is an old data file
and N is a new data file, the prefetch data blocks are sent in
the following manner:

NO N1 N0 N1 M0 M1 NO N1 NO N1 MO M1 . ..

The STB 300, once turned on, continuously receives and
updates a program guide stored in the local memory 308 of

US 6,725,267 B1

15

a STB 300. In an exemplary embodiment, the STB 300
displays data file information including the latest program
guide on a TV screen. Data file information, such as video
file information, may include movieID, movie title, descrip-
tion (in multiple languages), category (e.g., action, children),
rating (e.g., R, PG13), cable company policy (e.g., price,
length of free preview), subscription period, movie poster,
and movie preview. In an exemplary embodiment, data file
information is sent via the dedicated channel, such as a
channel reserved for firmware update, commercials, and/or
emergency information. In another exemplary embodiment,
information is sent in a physical channel shared by other data
streams. In an exemplary embodiment, while the STB 300 is
not playing any data file, the STB 300 is tuned into the
dedicated channel and is ready to receive and update
prefetch data blocks that have not yet been received.

In an exemplary embodiment, previews are comprised of
randomly selected data blocks in a data stream of a data file.
Thus, a user who selects a preview of a data file multiple
times is unlikely to view an identical preview. An advantage
of randomly composed previews is that the DOD system 100
does not need extra bandwidth to broadcast a predetermined
preview program. Instead, the DOD system 100 randomly
selects data blocks in the normal data stream of a data file
after a user requests to view a preview of that data file. In a
preferred embodiment, some data blocks cannot become a
part of any preview. For example, if a data file provides a
movie, the data blocks of the second half of the movie
should not become a part of a randomly selected preview.

A subscribing client can view a list of available data files
arranged by categories displayed on a television screen.
When the client selects one of the available data files, the
STB 300 controls its hardware to tune into a corresponding
physical channel and/or a virtual sub-channel to start receiv-
ing data packets for that data file. The STB 300 examines
every data packet header, decodes data in the data packets,
and determines if a received data packet should be retained.
If the STB 300 determines that a data packet should not be
retained, the data packet is discarded. Otherwise, the packet
data is saved in the local memory 308 for later retrieval or
is temporarily stored in the buffer memory 309 until it is sent
to the decoder 312.

To improve performance efficiency by avoiding frequent
read/write into the local memory 308, in an exemplary
embodiment, the STB 300 uses a “sliding window” antici-
pation technique to lock anticipated data blocks in the
memory buffer 309 whenever possible. Data blocks are
transferred to the decoder 312 directly out of the memory
buffer 309 if a hit in an anticipation window occurs. If an
anticipation miss occurs, data blocks are read from the local
memory 308 into the memory buffer 309 before the data
blocks are transferred to the decoder 312 from the memory
buffer 309.

In an exemplary embodiment, the STB 300 responds to
subscribing client’s commands via infrared (IR) remote
control unit buttons, an IR keyboard, or front panel
pushbuttons, including buttons to pause, play in slow
motion, rewind, zoom and single step. In an exemplary
embodiment, if a subscribing client does not input any action
for a predetermined period of time (e.g., scrolling program
menu, or selecting a category or movie), a scheduled com-
mercial is played automatically. The scheduled commercial
is automatically stopped when the subscribing client pro-
vides an action (e.g., press a button in a remote control unit).
In another exemplary embodiment, the STB 300 can auto-
matically insert commercials while a video is being played.
The service provider (e.g., a cable company) can set up a

10

15

20

25

30

35

40

45

50

55

16

pricing policy that dictates how frequently commercials
should interrupt the video being played.

In an exemplary embodiment, a cable company using the
DOD system 100 can preset a price list based on the number
of commercial interruptions. In one embodiment, data
blocks for commercials are continuously broadcasted via a
dedicated channel which also broadcasts a program guide,
an emergency bit, and any firmware update. A user can
choose from such a price list an acceptable balance between
price and commercials. In an exemplary embodiment, the
DOD system 100 implements the user’s selection by main-
taining an internal clock which allows automatic insertion of
commercial data blocks at the predetermined time intervals
based on the user’s selected pricing scheme.

If an emergency information bit is found in a data packet
header, the STB 300 pauses any data receiving operation and
controls its hardware to tune into the channel reserved for
receiving data file information to obtain and decode any
emergency information to be displayed on an output screen.
In an exemplary embodiment, when the STB 300 is idled, it
is tuned to the channel reserved for receiving data file
information and is always ready to receive and display any
emergency information without delay.

In one embodiment, when the STB 300 appears to be idle
(e.g., when a user is not using the system), an alarm may go
off to alert a user to turn on the output device to view the
emergency information. In another embodiment, the STB
300 is capable of distinguishing emergency information for
different regions. For example, the emergency information
for an unrelated region will not interrupt a data file being
played or trigger an alarm. In contrast, in existing systems,
cable companies have to manually interrupt a broadcast to
send emergency information.

The foregoing examples illustrate certain exemplary
embodiments of the invention from which other
embodiments, variations, and modifications will be apparent
to those skilled in the art. The invention should therefore not
be limited to the particular embodiments discussed above,
but rather is defined by the following claims.

Appendix A

Systems and Methods for Providing Video-On-
Demand Services for Broadcasting Systems

The following is a step-by-step description of the exem-
plary process illustrated in FIG. 4 for generating a sched-
uling matrix for a data file having six data blocks:

START

(Step 402) Receive a number of data blocks for a data file
(x); assume the number of data blocks is equal to 6 (x=0).

(Step 404) Set j=0

(Step 406) Clear a Reference Array (RA)

(Step 408) Compare j to x.

(Step 412) j is less than x (0<6), let i=0

(Step 414) Compare i to Xx.

(Step 418) i is less than x (0<6). Read matrix positions of
column [0] in the SM and write to RA; initially, the SM
is empty so nothing is written into RA.

(Step 420) Does RA contain data block i or blk0?

(Step 422) RA does not contain anything because it is empty.
Write blk0 into position [0, 0] in SM and the RA.

(Step 424) Add 1 to i (i=1) to derive value for position [1,
0]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (1<6). Read matrix positions of
column [1] in the SM and write to RA; initially, the SM
is empty so nothing is written into RA.

US 6,725,267 B1

17

(Step 420) Does RA contain data block i or blk1?

(Step 422) RA does not contain blkl. Write blkl into
position [1, 0] in SM and the RA.

(Step 424) Add 1 to i (i=2) to derive value for position [2,
0]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (2<6). Read matrix positions of
column [2] in the SM and write to RA; initially, the SM
is empty so nothing is written into RA.

(Step 420) Does RA contain data block i or blk2?

(Step 422) RA does not contain blk2. Write blk2 into
position [2, 0] in SM and the RA.

(Step 424) Add 1 to i (i=3) to derive value for position [3,
0]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (3<6). Read matrix positions of
column [3] in the SM and write to RA; initially, the SM
is empty so nothing is written into RA.

(Step 420) Does RA contain data block i or blk3?

(Step 422) RA does not contain blk3. Write blk3 into
position [3, 0] in SM and the RA.

(Step 424) Add 1 to i (i=4) to derive value for position [4,
0]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (4<6). Read matrix positions of
column [4] in the SM and write to RA; initially, the SM
is empty so nothing is written into RA.

(Step 420) Does RA contain data block i or blk4?

(Step 422) RA does not contain blk4. Write blk4 into
position [4, 0] in SM and the RA.

(Step 424) Add 1 to i (i=5) to derive value for position [5,
0]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (5<6). Read matrix positions of
column [5] in the SM and write to RA; initially, the SM
is empty so nothing is written into RA.

(Step 420) Does RA contain data block i or blk5?

(Step 422) RA does not contain blk5. Write blk5 into
position [5, 0] in SM and the RA.

(Step 424) Add 1 to i (i=6). Go back to Step 414.

(Step 414) Compare i to x.

(Step 416) i is equal to x (6=6). Increment j by 1 (j=1). Go
to Step 406.

(Step 406) Clear a Reference Array (RA)

(Step 408) Compare j to x.

(Step 412) j is less than x (1<6), let i=0.

(Step 414) Compare i to x.

(Step 418) i is less than x (0<6). Read matrix positions of
column [1] in the SM and write to RA.

Position [1, 0] contains blkl; thus, blkl is written into RA.
All other positions are empty.

(Step 420) Does RA contain data block i or blk0?

(Step 422) RA does not contain blk0. Write blk0 into
position [1, 1] in the SM and the RA. RA now has blkl
and blk0.

(Step 424) Add 1 to i (i=1) to derive value for position (2,
1]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (1<6). Read matrix positions of
column [2] in the SM and write to RA.

Position [2, 0] contains blk2. All other positions are empty.
RA now has blkl, blk0, and blk2.

(Step 420) Does RA contain data block i or blk1?

(Step 424) RA contains blkl. Thus, nothing is written into
position [2, 1]. Add 1 to i (i=2) to derive value for position
[3, 1]. Go back to Step 414.

(Step 414) Compare i to x.

10

15

20

25

30

35

40

45

50

55

60

65

18

(Step 418) i is less than x (2<6). Read matrix positions of
column [3] in the SM and write to RA.

Position [3, 0] contains blk3. All other positions are empty.
RA now has blkl, blk0, blk2, and blk3.

(Step 420) Does RA contain data block i or blk2?

(Step 424) RA does contain blk2. Thus, nothing is written
into position [3, 1]. Add 1 to i (i=3) to derive value for
position [4, 1]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (3<6). Read matrix positions of
column [4] in the SM and write to RA.

Position [4, 0] contains blk4. All other positions are empty.
RA now has blk1, blk0, blk2, blk3, and blk4.

(Step 420) Does RA contain data block i or blk3?

(Step 424) RA does contain blk3. Thus, nothing is written
into position [4, 1]. Add 1 to i (i=4) to derive value for
position [5, 1]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (4<6). Read matrix positions of
column [5] in the SM and write to RA.

Position [5, 0] contains blk5. All other positions are empty.
RA now has blk1, blk0, blk2, blk3, blk4, and blk5.

(Step 420) Does RA contain data block i or blk4?

(Step 424) RA does contain blk4. Thus, nothing is written
into position [5, 1]. Add 1 to i (i=5) to derive value for
position [0, 1]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (5<6). Read matrix positions of
column [0] in the SM and write to RA.

Position [0, 0] contains blk0. All other positions are empty.
RA already contains blk0; thus, blk0 is discarded.

(Step 420) Does RA contain data block i or blk5?

(Step 424) RA does contain blkS. Thus, nothing is written
into position [0, 1]. Add 1 to i (i=6).

Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 416) i is equal to x (6=06). Increment j by 1 (=2). Go
to Step 406.

(Step 406) Clear a Reference Array (RA)

(Step 408) Compare j to x.

(Step 412) j is less than x (2<6), let i=0.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (0<6). Read matrix positions of
column [2] in the SM and write to RA.

Position [2, 0] contains blk2. All other positions are empty.
RA now has blk2.

(Step 420) Does RA contain data block i or blk0?

(Step 422) RA does not contain blk0. Write blk0 into
position [2, 2] in the SM and the RA. RA now has blk2
and blkO.

(Step 424) Add 1 to i (i=1) to derive value for position [3,
2]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (1<6). Read matrix positions of
column [3] in the SM and write to RA.

Position [3, 0] contains blk3. All other positions are empty.
RA now has blk2, blk0, and blk3.

(Step 420) Does RA contain data block i or blk1?

(Step 422) RA does not contain blkl. Write blkl into
position [3, 2] in the SM and the RA. RA now has blk2,
blk0, blk3, and blkl.

(Step 424) Add 1 to i (i=2) to derive value for position [4,
2]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (2<6). Read matrix positions of
column [4] in the SM and write to RA.

Position [4, 0] contains blk4. All other positions are empty.
RA now has blk2, blk0, blk3, blkl, and blk4.

US 6,725,267 B1

19

(Step 420) Does RA contain data block i or blk2?

(Step 424) RA does contain blk2. Thus, nothing is written
into position [4, 2]. Add 1 to i (i=3) to derive value for
position [5, 2]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (3<6). Read matrix positions of
column [5] in the SM and write to RA.

Position [5, 0] contains blk5. All other positions are empty.
RA now has blk2, blk0, blk3, blkl, blk4, and blk5.

(Step 420) Does RA contain data block i or blk3?

(Step 424) RA does contain blk3. Thus, nothing is written
into position [5, 2]. Add 1 to i (i=4) to derive value for
position [0, 2]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (4<6). Read matrix positions of
column [0] in the SM and write to RA.

Position [0, 0] contains blk0. All other positions are empty.
RA already contain blk0; thus blk0 is discarded.

(Step 420) Does RA contain data block i or blk4?

(Step 424) RA does contain blk4. Thus, nothing is written
into position [0, 2]. Add 1 to i (i=5) to derive value for
position [1, 2]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (5<6). Read matrix positions of
column [1] in the SM and write to RA.

Position [1, 0] contains blkl and position [1, 1] contains
blk0. RA already contains blkl and blk0; thus blkl and
blk0 are discarded. All other positions are empty.

(Step 420) Does RA contain data block i or blk5?

(Step 424) RA does contain blkS. Thus, nothing is written
into position [1, 2]. Add 1 to i (i=6).

Go back to Step 414.

(Step 414) Compare i to x.

(Step 416) i is equal to x (6=6). Increment j by 1 (j=3). Go
to Step 406.

(Step 406) Clear a Reference Array (RA)

(Step 408) Compare j to x.

(Step 412) j is less than x (3<6), let i=0.

(Step 414) Compare i to x.

(Step 418) i is less than x (0<6). Read matrix positions of
column [3] in the SM and write to RA.

Position [3, 0] contains blk3and position [3, 2] contains
blkl. BIk3 and blkl are written into RA. All other
positions are empty.

(Step 420) Does RA contain data block i or blk0?

(Step 422) RA does not contain blk0. Write blk0 into
position [3, 3] in the SM and the RA. RA now has blk3,
blkl and blk0.

(Step 424) Add 1 to i (i=1) to derive value for position (4,
3]. Go back to Step 414.

(Step 414) Compare i to x. (Step 418) i is less than x (1<6).
Read matrix positions of column [4] in the SM and write
to RA.

Position [4, 0] contains blk4. All other positions are empty.
RA now has blk3, blkl, blk0 and blk4.

(Step 420) Does RA contain data block i or blk1?

(Step 424) RA does contain blkl. Thus, nothing is written
into position [4, 3]. Add 1 to i (i=2) to derive value for
position (5, 3]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (2<6). Read matrix positions of
column [5] in the SM and write to RA.

Position [5, 0] contains blk5. All other positions are empty.
RA now has blk3, blkl, blk0, blk4, and bIkS.

(Step 420) Does RA contain data block i or blk2?

(Step 422) RA does not contain blk2. Write blk2 into
position [5, 3] in the SM and the RA. RA now has blk3,
blkl, blk0, blk4, blks5, and blk2.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

(Step 424) Add 1 to i (i=3) to derive value for position (0,
3]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (3<6). Read matrix positions of
column [0] in the SM and write to RA.

Position [0, 0] contains blk0. All other positions are empty.
RA already contains blk0; thus, discard blk0.

(Step 420) Does RA contain data block i or blk3?

(Step 424) RA does contain blk3. Thus, nothing is written
into position [0, 3]. Add 1 to i (i=4) to derive value for
position (1, 3]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (4<6). Read matrix positions of
column [1] in the SM and write to RA.

Position [1, 0] contains blkl and position [1, 1] contains
blk0. All other positions are empty.

RA already contains blkl and blk0; do not write a duplicate
copy.

(Step 420) Does RA contain data block i or blk4?

(Step 424) RA does contain blk4. Thus, nothing is written
into position [1, 3]. Add 1 to i (i=5) to derive value for
position [2, 3]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (5<6). Read matrix positions of
column [2] in the SM and write to RA.

Position [2, 0] contains blk2 and position [2, 2] contains
blk0. All other positions are empty.

RA already contains blk2 and blk0; do not write a duplicate
copy.

(Step 420) Does RA contain data block i or blk5?

(Step 424) RA does contain blkS. Thus, nothing is written
into position [2, 3]. Add 1 to i (i=6).

Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 416) i is equal to x (6=06). Increment j by 1 (=4). Go
to Step 406.

(Step 406) Clear a Reference Array (RA)

(Step 408) Compare j to x.

(Step 412) j is less than x (4<6), let i=0.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (0<6). Read matrix positions of
column [4] in the SM and write to RA.

Position [4, 0] contains blk4. Blk4 is written into RA. All
other positions are empty.

(Step 420) Does RA contain data block i or blk0?

(Step 422) RA does not contain blk0. Write blk0 into
position [4, 4] in the SM and the RA. RA now has blk4
and blkO.

(Step 424) Add 1 to i (i=1) to derive value for position [5,
4]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (1<6). Read matrix positions of
column [5] in the SM and write to RA.

Position [5, 0] contains blk5 and position [5, 3] contains
blk2. All other positions are empty.

RA now has blk4, blk0, blk5, and blk2.

(Step 420) Does RA contain data block i or blk1?

(Step 422) RA does not contain blkl. Write blkl into
position [5, 4] of the SM and the RA. RA now has blk4,
blk0, blk5, blk2, and blkl.

(Step 424) Add 1 to i (i=2) to derive value for position [0,
4]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (2<6). Read matrix positions of
column [0] in the SM and write to RA.

Position [0, 0] contains blk0. All other positions are empty.
RA already contains blk0; thus, do not write a duplicate

copy.

US 6,725,267 B1

21

(Step 420) Does RA contain data block i or blk2?

(Step 424) RA does contain blk2. Add 1 to i (i=3) to derive
value for position [1,4]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (3<6). Read matrix positions of
column [1] in the SM and write to RA.

Position [1, 0] contains blkl and position [1, 1]. All other
positions are empty. RA already contains blkl and blkO0;
do not write a duplicate copy.

(Step 420) Does RA contain data block i or blk3?

(Step 422) RA does not contain blk3. Write blk3 into
position [1, 4] of the SM and the RA. RA now has blk4,
blk0, blk5, blk2, blkl, and blk3.

(Step 424) Add 1 to i (i=4) to derive value for position [2,
4]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (4<6). Read matrix positions of
column [2] in the SM and write to RA.

Position [2, 0] contains blk2 and position [2, 2] contains
blk0. All other positions are empty.

RA already contains blk2 and blk0; do not write a duplicate
copy.

(Step 420) Does RA contain data block i or blk4?

(Step 424) RA does contain blk4. Thus, nothing is written
into position [2, 4]. Add 1 to i (i=5) to derive value for
position [3, 4]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (5<6). Read matrix positions of
column [3] in the SM and write to RA.

Position [3, 0] contains blk3, position [3, 2] contains blkl,
and position [3, 3] contains blk0. All other positions are
empty. RA already contains blk3, blkl, and blk0; do not
write a duplicate copy.

(Step 420) Does RA contain data block i or blk5?

(Step 424) RA does contain blkS. Thus, nothing is written
into position [3, 4]. Add 1 to i (i=6).

Go back to Step 414.

(Step 414) Compare i to x.

(Step 416) i is equal to x (6=6). Increment j by 1 (j=5). Go
to Step 406.

(Step 406) Clear a Reference Array (RA)

(Step 408) Compare j to x.

(Step 412) j is less than x (5<6), let i=0.

(Step 414) Compare i to x.

(Step 418) i is less than x (0<6). Read matrix positions of
column [5] in the SM and write to RA.

Position [5, 0] contains blk5, position [5, 3] contains blk2,
and position [5, 4] contains blk1.

BIKkS, blk2, and blk1 are written into RA. All other positions
are empty.

(Step 420) DoesRA contain data block i or blk0?

(Step 422) RA does not contain blk0. Write blk0 into
position [5, 5] in the SM and the RA. RA now has blk5,
blk2, blkl, and blkO.

(Step 424) Add 1 to i (i=1) to derive value for position [0,
5]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (1<6). Read matrix positions of
column [0] in the SM and write to RA.

Position [0,0] contains blk0 and all other positions are
empty. RA now has blkS, blk2, blkl, and blk0

(Step 420) Does RA contain data block i or blk1?

(Step 424) RA does contain blk1l. Add 1 to i (i=2) to derive
value for position (1, 5]. Go back to Step 414.

(Step 414) Compare i to x.

(Step 418) i is less than x (2<6). Read matrix positions of
column [1] in the SM and write to RA.

10

15

20

25

30

35

40

45

50

55

60

65

22

Position [1, 0] contains blk1, position [1, 1] contains blk0,
and position [1, 4] contains blk3. All other positions are
empty. RA already contains blk0 and blk1; thus, do not
write a duplicate copy. Write blk3 into RA. RA now has
blk5, blk2, blkl, blk0, and blk3.

(Step 420) Does RA contain data block i or blk2?

(Step 424) RA does contain blk2. Add 1 to i (i=3) to derive
value for position (2, 5]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (3<6). Read matrix positions of
column [2] in the SM and write to RA.

Position [2, 0] contains blk2 and position [2, 2] contains
blk0. All other positions are empty. RA already contains
blk2 and blk0; do not write a duplicate copy.

(Step 420) Does RA contain data block i or blk3?

(Step 424) RA does contain blk3. Add 1 to i (i=4) to derive
value for position (3, 5]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (4<6). Read matrix positions of
column [3] in the SM and write to RA.

Position [3, 0] contains blk3, position [3, 2] contains blkl,
position [3, 3] contains blk0. All other positions are
empty. RA already contains blk3, blkl, and blk0; do not
write a duplicate copy.

(Step 420) Does RA contain data block i or blk4?

(Step 422) RA does not contain blk4. Write blk4 into
position [3, 5] of the SM and the RA. The RA now has
blk5, blk2, blkl, blk0, blk3, and blk4.

(Step 424) Add 1 to i (i=5) to derive value for position [4,
5]. Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 418) i is less than x (5<6). Read matrix positions of
column [4] in the SM and write to RA.

Position [4, 0] contains blk4 and position [4, 4] contains
blk0. All other positions are empty.

RA already contains blk4 and blk0; do not write a duplicate
copy.

(Step 420) Does RA contain data block i or blk5?

(Step 424) RA does contain blkS. Thus, nothing is written
into position [3, 4].

(Step 424) Add 1 to i (i=6). Go back to Step 414.

(Step 414) Compare i to Xx.

(Step 416) i is equal to x (6=6). Increment j by 1 (0=5). Go
to Step 406.

(Step 406) Clear a Reference Array (RA)
(Step 408) Compare j to x.
(Step 410) j is equal to x (6<6); END.

What is claimed is:

1. A method for sending data to a client to provide
data-on-demand services, the method comprising the steps
of:

(a) receiving a data file;

(b) specifying a time interval;

(c) parsing said data file into a plurality of data blocks

based on said time interval,
(d) prefetching a set of prefetched data blocks from said
plurality of data blocks, wherein prefetching said set of
prefetched data blocks includes the acts of:
determining a desired reduction in bandwidth that is
necessary for transmitting a remaining data blocks of
said plurality of data blocks to said client;

determining a desired prefetch delay time that is asso-
ciated with receiving said set of prefetched data
blocks at said client; and

selecting said set of prefetch data blocks based on said
desired reduction in bandwidth and said desired
prefetch delay time;

US 6,725,267 B1

23

(e) sending said set of prefetched data blocks in a dedi-
cated channel; and

(0 transmitting said remaining data blocks of said plu-
rality of data blocks in a transmission channel.
2. An apparatus for scheduling and broadcasting on
demand data, the apparatus comprising:

a first channel server suitable for the transmission of
digital broadcast data via a first channel;

a second channel server suitable for the transmission of
digital broadcast data via a second channel;

a data broadcast controller for:

parsing an on-demand data file into a plurality of blocks
of data;

preparing a scheduling matrix comprising said plurality
of blocks of data; and

prefetching a set number of blocks of data from said
scheduling matrix to form a set number of prefetched
blocks of data;

determining a prefetch delay time that is associated
with receiving said set number of prefetched blocks
of data;

wherein said data broadcast controller reduces a band-
width necessary for transmission of a remaining
blocks of data from said plurality of blocks of data by
prefetching said set number of blocks of data; and

a transmitter for transmitting said set number of
prefetched blocks of data on said first channel, and
transmitting said remaining blocks of data as scheduled
in said matrix on said second channel.

3. The apparatus for scheduling and broadcasting on
demand data as in claim 2, wherein the data broadcast
controller determines an optimal set number of blocks of
data to prefetch based on a determined reduction in band-
width that is necessary for transmitting said remaining
blocks of data of said plurality of blocks of data and said
determined prefetch delay time that is associated with
receiving said optimal set number of blocks of data to
prefetch.

4. The apparatus for scheduling and broadcasting on
demand data as in claim 3, wherein the data broadcast
controller determines the optimal set number of blocks of
data to prefetch on an incremental block by block basis.

5. The apparatus for scheduling and broadcasting on
demand data as in claim 2, wherein the data broadcast
controller prepares a scheduling matrix comprised of blocks
of data for a plurality of different on-demand data files.

6. The apparatus for scheduling and broadcasting on
demand data as in claim 5, wherein the transmitter transmits
a plurality of different on-demand data files on said second
channel.

7. The apparatus for scheduling and broadcasting on
demand data as in claim 6, wherein the transmitter transmits

10

15

30

35

40

45

50

24

prefetched data from a plurality of different on-demand data
files on said first channel.

8. The apparatus for scheduling and broadcasting on
demand data as in claim 2, wherein preview data is trans-
mitted on said first channel.

9. The apparatus for scheduling and broadcasting on
demand data as in claim 2, wherein emergency data is
transmitted on said first channel.

10. The apparatus for scheduling and broadcasting on
demand data as in claim 2, wherein commercial data is
transmitted on said first channel.

11. The apparatus for scheduling and broadcasting on
demand data as in claim 2, wherein the data broadcast
controller randomly selects blocks of data for as preview
data to be transmitted on said first channel.

12. An apparatus capable of receiving and handling a
plurality of digital data services such as VOD and digital
broadcast, said apparatus comprising:

a databus;

a first communication device suitable for coupling to a
digital broadcast communications medium, said first
communication device operable to receive digital
broadcast data over at least a first and second channels;

memory bi-directionally coupled to said databus;

a digital data decoder bi-directionally coupled to said
databus; and

a central processing unit (CPU) bi-directionally coupled
to said databus, said CPU implementing a control
process controlling said memory, said digital decoder,
and a demodulator, said control process executing
instructions for combining the received digital broad-
cast data from said first and second channels to repro-
duce an on-demand digital data file; wherein the
received digital broadcast data on said first channel
includes prefetched data blocks from said on-demand
digital data file and the received digital broadcast data
on said second channel includes data blocks from said
on-demand digital data file in accordance with a sched-
uling matrix, and wherein said prefetched data blocks
are prefetched based on a determined reduction of
bandwidth that is necessary for transmitting the
received digital broadcast data on said second channel
and a determined prefetch delay time that is associated
with transmitting said prefetched data blocks on said
first channel.

13. The apparatus for scheduling and broadcasting on
demand data as in claim 2, wherein the on-demand digital
data file is a video on demand data file.

14. The apparatus for scheduling and broadcasting on
demand data as in claim 8, wherein the on-demand data file
is a web page data file.

#* #* #* #* #*

	us006725267-001.tif
	us006725267-002.tif
	us006725267-003.tif
	us006725267-004.tif
	us006725267-005.tif
	us006725267-006.tif
	us006725267-007.tif
	us006725267-008.tif
	us006725267-009.tif
	us006725267-010.tif
	us006725267-011.tif
	us006725267-012.tif
	us006725267-013.tif
	us006725267-014.tif
	us006725267-015.tif
	us006725267-016.tif
	us006725267-017.tif
	us006725267-018.tif
	us006725267-019.tif

